N 70 205@{3'

Report No. F-69-5

NASA CR108939

L &

THEORETICAL INVESTIGATION OF CROSSFLOW
EFFECTS ON COMPRESSIBLE TURBULENT BOUNDARY IAYER
OVER BODIES OF REVOLUTION

ASE FILE
e COPY

by

Victor Zakkay
and
Wladimiro Calarese

Department of Aeronautics and Astronautics

Prepared for the
Office of University Affairs
National Aeronautics and Space Administration
under Grant

NGL-33-016-067

(7
New York University

School of Engineering and Science
University Heights, New York, N.Y. 10453

December 1969



NEW YORK UNIVERSITY
New York, New York

THEORETICAL INVESTIGATION OF CROSSFLOW
EFFECTS ON COMPRESSIBLE TURBULENT BOUNDARY IAYER
OVER BODIES OF REVOLUTION
by

Victor Zakkay
Professor

and

Wladimiro Calarese
Assistant Research Scientist

Department of Aeronautics and Astronautics

School of Engineering and Science

Prepared for The Office of University Affairs
National Aeronautics and Space Administration
under Research Grant NGL-33-016-067

December 1969

Report No.

F-69-5




ABSTRACT

An analysis for the compressible turbulent boundary layer undergoing
both adverse pressure gradient and crossflow along a plane of symmetry is
presented.

The purpose of this investigation is to provide a method for calculating
boundary layers such as the ones that occur on the centerline of symmetry
of an inlet.

The three dimenéional compressible integral equations are written along
.the symmetry plane, and integrated numerically, and in addition the effect of
crossflow and the behavior of the boundary layer is also studied.

Included in the report are comparisons with the sparse amount of
experimental results available in the literature. While this part of the
report describes the working equations for the analysis, a second part will
follow whereby a more extensive experimental investigation will be presented
in detail, and a final comparison with the experimental results will be

performed.
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INTRODUCTION

Recently there haé been a large amount of work being performed on air
breathing propulsion systems, especially for determining flow fields over the
various configurations.

The boundary layer on axially symmetric configurations has been studied
by several investigators (Refs. 2,7) however, very little work has been performed
for three dimensional configurations,

The inlet part of the engine plays an important role in the determination
of the overall performance of the propulsion system, Of direct interest is
its boundary layer characteristics which place an upper limit on the maximum
pressure rise without separating the flow within the inlet. Methods of
avoiding this separation may be achieved by boundary layer bleed or by de;
signing a three dimensional inlet, The relative advantages of three dimensional
inlet designs are already known, and it is for this reason that this detailed
study of the behavior of the boundary layer under both adverse pressure gra-
dient as well as favorable crossflow is undertaken.,

In spite of the fact that an adverse crossflow which results from the
wall of the inlet presents the upper criteria for separation, and is the more
difficult to analyze, this research will be concerned with the favorable cross-
flow condition, and its effect on the turbulent boundary layer behavior,

For the analysis, the momemtum integral equations in the axial and peri-
pheral direction, in addition to the energy equations, are used. The axial
momentum equation becomes independent of the peripheral one along the symmetry

plane, and therefore simplifies the analysis. 1In addition to the adverse




pressure gradient produced by the inlet surface, it is well known that there
are present significant pressure gradients normal to the wall, which tend
to enhance the probability of boundary layer separations.

Instead of treating the boundary layer under all these conditions, the
normal gradients or the effect of dp/oy on the behavior of the boundary layer
is treated in the same manner as in Refs, 7, 10, and 17.

This procedure consists of determining the boundary layer characteristics
such as (6,5*and 9) under 3p/dy = 0, and adding to this the contributions
due to the inviscid rotational flowfield. This method was found to be good
for the axially symmetric case, and will be proved adequate subsequently in
part 2 of this paper.

In addition, the analyses are finally compared with the experimental
results of Ref, 6 for a cone at an angle of attack, and with the theories

of Refs. 11 and 12, which refer to the two dimensional case,




I. Integral Equations:

An orthogonal system of geodesic coordinates (x,t,y) was chosen,(Fig. 1)
The x curves (m=const)~are‘the projection of the inviscid streamline on the
surface of the body and the ¢ curves (x=const,) afe the orthogonal trajectories
of the projection. The surface of the body is located at y=0, A linear
element ds’ is given by (Fig. 1)
dsz=dx2+ r2 dcp2+dy2 (Fig. 2)

In this coordinate system, assuming zero normal pressure gradient, the

steady boundary layer momentum equations are:

du ou  w du ldr 2, 9 9, du
P VA, T o rax V)T KTy i) (-1
d 1 9
o g+ vt L = - 284 & g (1-2)
0
= I=
0 52}, (I-3)

Energy equation

oH , w 9H OH | _ 9 OH , 1-Pr 3h i
p (u - ) v dy ) = dy { M (By * e oy ) } (1-4)
Continuity équation
3 )
5= (oru) + 39 (W) + 3o (orv) = 0 (1-5)

At y=0, u=v=w=o0, and at y=0, u=u, and ve=we=0, therefore the boundary
conditions for Eq. (I-1) are:

du 3
p_u e ep. (1-6)
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In order to derive the integral form of Eq. (I-1) we make use of the

continuity eq. (I-5), from which

vy [Sr0r) + 52 (ow) | 4y (1-8)

Substituting for v in Eq. (I-1), integrating term by term from zero to 6, and

using the boundary conditions,we obtain [see Appendix 1]
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The energy equation (I-4), for unity Prandtl number, is
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using continuity (Eq. I-5),
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Integrating term by term throughout the boundary layer, we obtain

[ see Appendix 2 ]
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11, Evaluation of the Cross-flow Parameter

The momentum integral equation in the streamwise direction and the

energy integral equation differ from the standard axisymmetric ones by the

term where (%% ) appears, due to the presence of crossflow, ( g% >

Mer A Mer.

depends on the inviscid pressure distribution on the body and, therefore,
the inviscid momentum equation in the peripheral direction is used to
evaluate it,

Equation I-2 becomes

ow ,wow 1 dr o1 3p
U % + r op e dx WV T pr o (11-1)

I1f the pressure distribution over the body under consideration is known

from theory or experiment, we can find a relationship between %% and %%.

Differentiating equation II-1 with respect to p we get

2 2 2
by dw,  Bw ,L(2w),w Dw 1de,
8p Ox tu pox + r \ oy + r sz + r dx © a0 +
2
1 dr du 1 o7p 1 op 9p
N e A ol + - _
112
r dx = 8v pt amz pzr &p O (11-2)
. Ly , _Su _dp _
Evaluating eq. II-2 at the meridian plane, i.e. where w= 55 =30 0,
we get
2 2 2
S w_ léﬂ) lde ow 1 2p,
acobx+r<bcp Tra& Y% Tor 2 0 (11-3)




I ¥ . .
Defining s -V and noting that u = u, in the inviscid momentum equation

e :
under consideration and p = Po if we assume zero normal pressure

gradient, Eq. I1I-3 becomes

8 aw* 1 aw* ’ dr aw* 1 1 azpe
é-x é?(; >Mer .= r \aw ) (_ > ( 'R )

Mer. . o0 Mer. ryMe Pe Bmz Mer.,

For bodies with conical symmetry where = 0, eq. II-3 becomes

o
L;O oo
d

2
Ly, Lde 2w, 1
r \am r dx 8w  pr

[\
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Written in non-dimensional form, eq. II-5 becomes .

2

2
8
*)

v
&0 > o) Mer .

\3o =0

rmnng (5" o (o
Mer. Mer. yMe Pe

Eq. II-6 is quadratic and is readily solved

* sin n inzn 2p .
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oo Mer. 2 4 yMi Pe sz Mer.

2

' p

. 2
sin n
valid for £ . 1 < L
4 2 P
M, e

;) > 0
o Mer.

For bodies with cylindrical symmetry, eq. II-6 becomes

2
Bw* 2 1 1 0Py _
W " TZ \P 32 -0
Mer. yM_ e o0 Mer.

the solution of which is

(3, (S5,

Mer. YM

proviéed that the term in the radical sign is = O,
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It is possible now to write the momentum and energy integral equations
valid for different configurations,

For a curved flare:

- du ap
.d_e.z..[<H+2>_1_.__§+.]_'. ....Q.*.lﬂ.-}e-
dx _ u_ dx P dx r dx
e
J 8
1/ dw u C . .
- < ( P J. % ( l- 5 ) dy + f/2 - (Momentum Equation) (11-10)
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pe H* pu H (II'].S)
2
o P,
In eq. II-4, the term( -—E—-> can be evaluated,
p Mer.

The pressure distribution on a body of revolution can be represented to

second-order approximation by the following equation:

2 2
P~ P, +A qcosep+Da +Ba cos 2p (II-16)

where ¢ = 0°

represents the leeward side, P, is the static pressure at zero

angle of attach. A,D, and B are constants which depend on the free stream

Mach number and the body semivertex angle, and ¢ is the angle of attack., If

the peripheral pressure distribution is known experimentally, then it is possible
to obtain the values of the constants from the approximate values of the

pressure at different peripheral angles, for instance ¢ = 0°, ¢ = 90°, and

© = 180°,

Differentiating eq. II-16 twice with respect to ¢, we get

2
fs) Pe 2
—5 = - A qgcosep -4 B a cos 2 (11-17)
xp
On the windward side of the meridian plane (¢ = 180°), equation II-17 becomes
BZP
< e) =Aa-4Bo (11-18)
2 Mer.
xp 2
Alternatively, the term (B pe> could be obtained assuming a Newtonian
. 2 / Mer.
ap
approximation for the pressure distribution
(si + si 08 0s )2
EE S5 . sin m, cos a+ sin g cos n_ cos @
(pe) Mer, © (sin . €08 o + sin o cos ﬂc)Z (11-19)
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0
where ©® = 0 represents the windward side,

Differentiating twice with respect to ¢

825 [sin cos 1 sin @ cos @ cos © - cos2 sinza (sin2 - c s2 ) 1I-20
e _ .o Ne ¢ > Ne ® 08 ) | (11-20)

3’ in’ )
0 sin’ (o + 1,

At the meridian plane
az- 62 ( . . + 2 . 2

< Pg > ) < 1 P, ) - sin Mg cos Ne sin o cos Q cos n.sin a) (I1-21)
amz Mer. Pe Bmz Mer, sin2 (o + nc)

III. Application of power law velocity profile and Crocco-relation

In order to solve the boundary layer equations, some assumptions must
be formulated with regard to the velocity, density and enthalpy profiles,
A power law velocity profile is assumed to be valid, i,e,
u 1/N
T <y/6> (I11-1)
e
On cones and cylinders, N can be set equal to a constant as it has
been done in several analyses in axisymmetric or two dimensional flows, and
it is considered a fairly good approximation of the actual profile. The as-
sumption of the power profile validity in the laminar sublayer near the wall,
instead of a linear profile, is perfectly acceptable due to the small contri-
bution of this portion of the boundary layer to the integrals for 6 and 6*
(Ref. 5).
On compression flares, N is taken as a variable. Persh, in Ref, 5, shows
that the value of N is directly related to the variation of Ree. A p}ot

of N versus Re shows good agreement with experimental results. The resulting
6




curve (Fig. 3 of Ref. 5) can be approximated as follows without introducing
appreciable errors
N

R =]2 e
ey (111-2)

as it can be seen in Fig. 3, (Fig. 3)

It is possible then to set up a power correlation

1
Ree =K eN » (1I11-2A)

where K is a constant depending on the value of Ré and on the power law

assumption at the beginning of the flare, and the Seference quantities are

used to account for compressibility and heat transfer (Fig. 4). The Crocco (Fig. 4)
Relation, modified as in Ref. 14, is used for the enthalpy profile and it is

written as in Ref, 2, i.e. in terms of stagnation enthalpy to account for

real gas effects,

H* u 2

= . = -
=5 = (1-0) — +C<u> (I11-3)
H e e

e

where C is a constant that can be obtained by satisfying the initial values
of the momentum and energy thickness integral parameters,

The static enthalpy profile can then be obtained

u
H=H + #H, -K) IIe (IT1-4)
2 * oy
h+%u” = H +H ., (I11-5)
h=H +H % .1 (I1I-6)
W e u 2
e
h Hw H; u ui u 2
Pt bew () (I11-7)
e e e e e e
The modified profile is then
h Hw H: u “i : u 2
Bepty oot B3 ) g (3 am®
e e e e e e e
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The density profile based on the assumption of zero normal pressure gradient
is

P By
IV. Skin Friction and Heat Transfer
The skin friction method of Reference 5 is used with the
modification that T', the reference temperature, is used for the Reynolds
number based on the length and on the boundary layer thickness.
T N-2,52
oo - ()™ ()™ (E) T
20N TL (Iv-1)
p'ub )
her Re! = IV-
W e & “1 ( )
1 : A N+3
To ' Re5 N-2,52
'T" N1 N1 N+1 N-1 )
(Re NF3 (% >N+3 (52) N+3( 1 \W¥3 (1v-3)
20N
and
¥
Re' = P %1
W' (IV-4)
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The value obtained from Eq. IV-1 is compared with values obtained
in Refs. 3 and 16 for a cold wall in hypersonic stream and it is in

good agreement (Fig. 5).

T! is obtained from the reference enthalpy definition (Ref, 15)

H
hY o 140,035 ¥ + 0.45 (-Jﬂ - f)
he e he

A modified Reynolds analogy is used to obtained the value of the heat

transfer (Ref. 2)

9y c-1 ¢, pr2/3

H*
peue e

The initial value of the momentum thickness ¢ is obtained from Reshotko
and Tucker flat plate formula evaluated at the. beginning of the body or

compression surface (Ref., 11)

T 0.311
0.0259 —Eﬁ x 0:823
= e
8 ™ 0.602 M a .0.177
) &
Te vO

16

(Fig. 5)

(IV-5)

(Iv-6)

(Iv-7)




. %
On a conical or cylindrical surface the ratios 1 and 5, are constant, and

5’ &
for a given power law exponent Ni’ wall temperature and Mach number, using
Persh & lee tables (Ref., 18) for compressible turbulent flow, 6i and 6: can
be obtained once the initial value of the momentum thickness is known.
Alternatively, using the values of ei and Ni’ 61 and 6: can be obtained from

the integral parameters equations [Eqs. I-10 and I-11].

V. Method of Solutions:

The equations obtained in the past sections constitute a full set
necessary to obtain a solution. The momentum and energy integral equations
are solved numerically by a finite-difference method as indicated below.
1. The following conditions are given:
Local stagnation pressure and temperature, boundary
conditions for p(x) and( EE ) s initial conditions Ni and
Gi, body geometry. Tom

2. Compute & and 6: (fFrom Eqs. 1-10, I-11)

3. Compute (Cf/Z)i (Eq. IV-1).

4, TIncrement body length x =x, + Ax.

i+l ‘

5. Sqlve momentum integral equations in the streamwise and
peripheral directions and energy integral equation.

6. Obtain new 8 and 3,

7. Obtain neﬁ N.

8. Choose § and solve integral parameters for 6 and §.

9. Compare § and $ from integral equations and integral parameters.

10, 1f no agreement obtained, perturb 6'through iterations until

agreement is reached.

11, Repeat at next station up to the end of the body.

17




The solutions obtained are compared with the experiment of Ref. 6 per-
formed on a yawed cone and the experiment of Ref, 7 on a éurved flare at
zero angle of attack (neglecting the inviscid contribution for the latter),
and the agreement is good,

Vi. Cqmpérison4with experimental results (cone);

A comparison is made between the theory developed and the experiment in
Ref, 6 on the windward side of the meridian plane, Ref, 6 tabulates tﬁe
experimental results obtained for the boundary layer parameters on a yawed
cone placed in a turbulent compressible flow. The same initial conditions,
i.e. Mach number, stagnation temperature and pressure, and the same ratio
of angle of attach to semivertex cone angle, are used.

The pressure distribution in the peripheral direction reported in Ref, 6

is used to set up a system of three linear algebraic equations to determine

)
Mer.

while the Mach number distribution in the boundary layer is used to obtain,

the constants A, D and B in Eq. II-16 needed to find the value of (azpe/apz)

by means of the Crocco relation, the power law exponent 1/N. The Newtonian
approximation for the pressure distribution (Eq. II-21) is also used
alternatively, obtaining no appreciable difference,

The boﬁndary layer parameters 5,5*and o are therefore calculated, The
calculations are performed with and without the cross flow term in order to
study its direct effect on these parameters. The constant C of the modified
Crocco relation is evaluated, but in a set of calculations, it is set equal
to zero in order to compare the two results. As it can be seen from Figs. 6-9,

the results for € = 0 and C = constant are exactly the same, as it is 'expected
(Figs.6-9)

18




since the standard Crocco relation applies well on a cone. (Note that setting
C=0 the parameters 6 and ¥ become identically equal).

*
The experimental values of Ref. 6 for 6, 8§ and 6 are

6 = 0,155"

%
6 = 0,04"
6 = 0,0095"
The present results are-
6 = 0,1581"
* v
- n ow _ ) =
) 0.0394 for 3o MMer. const.
8 = 0,0088"
and
d = 0,1975"
. a %
7c= " __W__) -
8 0.0451 ' for 3o MMer.
& = 0,01098

%
ow

The cross flow adjustment, where the quantity ( el is constant

>Mer.
in the streamwise direction on a cone, gives a value for & within 2% of the
*
experimental value, a value for 5" within 1.5% and a value for 6 within 7%,
*
while, ignoring the cross flow, the values for 8, & and 6 are off by 27.4%,

12,7%, and by 15.5% respectively.

The results with and without crossflow differ by about 20%.

VII. Comparison with experimental results (compression flare):

In Ref, 7, an experimental investigation of hypersonic turbulent boundary
layer in large adverse pressure gradient on an axisymmetric flare at zero angle

of attack is treated, The experiments are performed at a free stream Mach

19




Number of 5.75. On the flare, due to the high pressure rise, adverse pressure
gradients have a large normal variation across the boundary layer, which is not
accounted for by boundary layer theory that sets the normal pressure gradient

equal to zero. Therefore Hoydysh and Zakkay, as well as others (see Refs. 2, 10

and 17), take into account the inviscid component of the boundary layer para

meters, and present measured data and viscous data, The measured data are to
be understood as the superposition of the inviscid and viscous components.
Since in the present analysis the static pressure in the normal direction is
assumed constant throughout the boundary layer, the comparison is made with
the viscous data of Ref. 7. The term due to the cross flow is set equal to zero
(no cross flow present on the fiares at g=0). In this case the momentum and
energy equations reduce to the equations of Ref, 2, The results obtained
(Figs.10-15) are in satisfactory agreement with the experimental data as well
as with previous theoretical investigations by Sasman & Cresci (Ref. 12) and
Reshotko & Tucker (Ref, 11). (Figs,.10-15)

The calculations of the boundary layer parameters are repeated for a=10°
on the windward side of the model. In this case the term due to the crossflow

s

< ew_ ) .is a function of the streamwise distance s', measured from the

% Mer.

beginning of the flare, The results are plotted in Figs. 16-20 and compared
*

to the ones obtained by setting ( —%% ) = 0 for the same inviscid distri-
. Mer.
bution to determine again the effect of the cross flow, (Figs,.16+20)

S
The values of 6, &6 , and 9, taking into comsideration the crossflow, are
20-25% lower than those without crossflow, while the form factor H, except for
a slight variation at the beginning of the flare, is identical in both cases,

In Fig. 21, the mass flux defect due to the crossflow is shown. (Fig. 21)

20




VIILI. Cylinder investigation.

The boundary layer parameters are calculated for a hollow

cylinder at an angle of attack and the results plotted in Figs. 22-25

* . w
and compared with values obtained setting (é—_> =0, It is
Mer,
found that the crossflow has a damping effect on the growth of (Figs. 22-25)

the parameters along the surface, and, beginning at x = 17",
they approach a constant value up to the end of the cylindrical

surface (x=35").

Conclusion
A method for calculating the compressible turbulent boundary
layer undergoing both adverse pressure gradient and crossflow

along a plane of symmetry has been presented,

While the method allows one to obtain the boundary layer
parameters such as 5,5* and @, it cannot predict separationm,
The method in addition assumes zero normal pressure gradient,
however, the contribution due to  3p/3y could be added as has

been demonstrated in Ref, 9,

The method of solution is simple and the numerical calculations
do not require a long computer time, The program can be used for
any body shape and any set of initial and boundary conditions.
Comparison with experiments and previous theories are made in
absence of crossflow to show the validity of the present method,

Due to the paucity of experiments on the subject, only the

experiment of Ref, 6 that involves crossflow is compared to the

21




present theory.

The present authors will present in part two a detailed

experimental study in order to verify the present analysis,

22
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APPENDIX I

Derivation of Momentum Integral eqguation in the Streamwise Direction,

The steady boundary layer momentum equation in the streamwige

vdirection is:

8u ,w Ou 1 dr 2 . @ o) ou
Y Y S B s (uE) (1-1)

and the continuity equation is:

B

i
o

- (pru) + & = (ow) + 2 = (rv) = (1-2)

At y=0, u=v=w=0 and at y=6, u=u_and v _=w =0, therefore the boundary
e e e

conditions for eq. 1l-1 are:

pu _e_ 9
ceE T 55 (1-3)
[ (W ay ) ] y=0 = &% (1-4)

In order to derive the integral form of eq. 1-1 we make use of the continuity

eq. 1-2, from which

2 o
v o= . %} ,éry [ S;a(pru) t 5% (pw) ] dy (1-5)

Substituting for v in eq. 1-l,integrating term by term from 0 to §, and using

the boundary conditions

J&ESTE /-{ / (R0 + 52 (ow)] ay 32 ay+,f§—( L) @
o

)
/ w2 dr ) du b 2 { du
= ¢ Pele & — == Jd 1=6
/o r dx dy //’ ¢ * & dy +‘/; oy M3y ) M (1-6)

26




The term ,//A { ,// (g (pru)+ b@ (QW)] dy } dy in eq. 1-6 can be

integrated by parts

)
) y ) /
) 3 )
f [ 5 / 2 oraydy Jay =u, /2 Graays [ u o Gorw) gy

_ oy o
(1-7)

o y 5 ,//6 |
au _ é_ _9.
[ " S‘;[ -a% (Dw)dyj}dy =u, [ acp(pw)dy- A u 5 (pw)dy (1-8)

Substituting in eq. 1l-1

' 6 6
du 4o _ 1 - 2. 0
Z pu 37 dy - - {ue / (pru) dy f u 3o (pru)dy + u% = (pw) dy

(s}

5 2
P._BU _/ w_ dr =
fo 3= (ow) dy } + / 2 o dx gy
e B [ |
© ee 3y (P (1-9)

Noting that

5 5
1 ,// d //’ d 1 ° 24
r S U 5g ru) dy = [ ugn (u) dytn fo pu SE gy (1-10)
3 —__a_. du
P (pru) ],“e = 3% (pruue) = pru H;E (1-11)

that the cross flow velocity w is equal to zero at the meridian plane, and

rearranging terms, eq. (1=9) becomes
8

) ) d
> iy gyl (02 1 / e
[ 3% (pu”) dy T / (Oruu dy + o pru == dy +

+% Abpuz = dy - 1 f ( )Mer ‘ li) dy / pe e dx
( ) (1-12)
y=0
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3 -, o dr
But 5% (‘m‘ Ye ) =T 5 (puu) +puw G (1-13)

Interchanging the order of integration and differentation, noting that

( ) depends on the inviscid pressure distribution and therefore is
oy /Mer.

independent of y, multiplying and dividing the left hand side of eq,(1.12) by

peuez’ and substituting eq. (1-13) into eq. (1-12) then

6
d 2 p___ u o 2 1 dr pu (u
dxee/ S 1) o tog, ;zr/o o Nie D)W
pu b _
L“' bl d - -—-——e € é‘i / ( - 2—) _
¥ Pee / ( 1> Y r (BCD >Mer. o g’ 1 u, dy =
e
- gp_‘)
5
u u
Defining e=o %;; (1- ;e> dy (1-15)
5
6*=/ (1- pu__ )dy (1-16)
o Pele
= (3
To ""(3}' )y= (1-17)
*
- B
=% (1-18)

2
substituting inte eq. (1-14) and dividing by p Ses the final result is:

du dp
ae _ (- )l._fi Lo_ey 1dr]
dx_-[ H+2) e dx+p xtTr &@]Y
6 .
L (B, [ 2 (1-2)
- = = le = )dy + C
Tug \ 30 JMer. s o u_ Y %t/ (1-19)
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APPENDIX 2

Derivation of the Energy Integral equation

Energy equation

(R E R E) - b(E5E B @-1)

For unity Prandtl number Eq. (2-1) becomes

p(“g_::J'% %cB+ éﬁ>='aa‘§(“'gl;' | (2-2)

Using continuity (Appendix 1, Eq. 1-2)
M wam 1 (7 (8 3 MY _ 3 (, 3
P { Y + r oo [ pr 4{: ( ox (pru) + L) (ow) ) dy ] 3;'} T Ry QJ dy ) (2=3)

Integrating term by term throughout the boundary layer:

foé(pu%})dy+£ (9._ 3H>dyf { f {:-—(pru)+ (pw)]dy}a dy =

d
3 dH
=f ay(“é?)dy (2-4)
o
Integrating by parts the last term of the left-hand side of eq. (2-4)
5 y ' 5 5
? SH [ 9
fo I f S, Gv ay J§ay -, X s (o) dy - f H gz (pru)dy @-5)
0
and
8 y b 5
' 9 oH ) )
S» [ Sowey JPay-n fo S (wiy- ﬁ R S oWy (2-6)

O
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Substituting eq.'s (285) and (2-6) into eq. (2-4) and again noting that the

cross flow velocity w is equal zero at the meridian plane, we obtain

& 1)
Fomto -2 n )k omo a)e @) oo qn

Mer.

or
8 H 6 8

°_ £ J‘ o i dr
ey -2 [ Leorya+d [ ey
o . o o

)
1 j‘ [H B " ow )
- - - s dy = .
But
\

e (pru)— B (pruH )= 6 (puH ) + puH dr since the stagnation enthal i

e ox x e put, 9% gnation enthalpy is

constant at the edge of the boundary layer.

Therefore eq., (2-8) becomes

o]

5 :
1j ow
1w () e ﬂ
rJ_ e ) Mer . %Ly (2-9)
Interchanging order of integration and differentation, considering ( o )

op

Mer.
independent of y and noting thatf pu (H =~ He) dy is only function of x
: o

at the meridian plane, eq. (2-9) becomes

dxj‘pu(H-=H)dy+-- fpu(H-H)dy==

|
L T

( %% ) J& p (|, -H) dy+q | (2-10)

Mer. o

or
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' 8
d J 1 dr f e
= . pu (He H) dy + = T . pu (He = H) dy =

- (%) fzp B =B dy - q

Mer,

oY

%k fé pu [(He- Hw) - - Ry ] dy + ;‘%E 16 pu [(Hé - Hw)“ (H"Hw)} d

)Mr:f o[ & -H) - @ -H)]|dy - q

We have defined
%

%
He<- Hw.— He and H = Hw =H

%
multiplying and dividing by Pe Ye He s g, (2-12) becomes

5 8 %
%puﬁ* pu__ 1__>d+ - ‘o_“l__(l__.H)dy=
X eee p.u r dx e'ee pu *
o"ee o ee He
5 *
1 ( ow ) * 0 ( H
= o= = puH le — ) dy =
T\ o Mer, ©© %Y Pele B b

e

and since we have defined

8 H*
_ pu
¢ = p.u 1= * ) dy
o ee He

eq. (2-13) becomes

d 1 dr %
dx [ peueHe ? ] r dx Pelee ¥ 7
5 *
.l w * _e_( 0
T T r ( EYy ) - Pelelle o Pele 1 i ) dy = Gy

Mer'.
e
But

d [ * d * du * dp
S .l puH & 7 =0 u H 3 e e
x eee” |7 Pellate ax + pe e @& ° tu Uty T
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(2-11)

(2-12)

(2~13)

(2-14)

(215}

(2-16)




Therefore, substituting eq. (2-16) into eq. (2=15) and dividing by

peueH: , the final form of the energy integral eq. is

ds 1 v, 1 % 1 g 1 (ow 0 H
& Tl & T T &l \w 1-5)%
Ue Pe ' e Mer, “o Pe Hé
Y
W
Pty ('2-17)
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Fig. 5. Coefficient of Friction Variation over Cones amnd Curved
' Flares at an Angle of Attack
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Zakkay & Calarese
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Fig, 13, Form Factor on a Curved Flare in Absence of Crossflow
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19. Zakkay & Calarese
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Fig,

35.2

19, Energy Thickness on a Curved Flare with and without Crossflow
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